
CS-doc-5406

CMS Intel Phi

Investigation

Liz Sexton-Kennedy and Stephan Lammel

August 19th
, 2014

version 1.02

Intel’s current Xeon Phi coprocessor cards provide up to a thousand GFLOPS of double precision
performance, i.e. about four times current server processor performance. Investigating the use of the
technology for compute intensive high-energy-physics applications is thus natural.

The Compact Muon Solenoid experiment observes proton–proton collisions at a rate of 40 MHz,
records about 2 PetaBytes of data per year, and utilizes around 100, 000 CPU cores at any given time
to reconstruct, simulate, and analyze this data.

A first investigation of the technology run into obstacles compiling the complex reconstruction,

simulation, and analysis software of the experiment with the Intel C++ compiler. The experiment

software uses extensions provided by the C++11 standard that the Intel compiler does not (yet)

support. A stand-alone Monte Carlo generator, capable of utilizing many cores, showed an Intel

Xeon Phi core to perform significantly slower than a current server processor core.

1

1 Introduction

At the end of 2012 Intel released a new Xeon Phi coprocessor [1], based on its Many Integrated
Core (MIC) architecture. The 5110P coprocessor card plugs into a PCI Express slot on the
motherboard. The coprocessor is effectively a 60 core SMP processor with four hardware
threads per core for a total of 240 virtual or logical cores. Each core has its own 64-Byte wide
vector floating point unit. The coprocessor runs at 1.053 GHz and has 32 kBytes level-1 and
512 kBytes of level-2 cache per core. There is 8 GBytes of memory on the coprocessor card.
The theoretical maximum double precision performance is just over a Tera FLoating-point
Operations Per Second, TFLOPS. In comparison, current Intel and AMD server processors
can perform about a quarter TFLOPS.

The instruction set of the first generation Intel Phi coprocessor provides a 64-bit execution
environment with 512-bit vector and Streaming SIMD (single instruction, multiple data) Ex-
tensions, SSE, support. It is not the standard x86 64 instruction set, i.e. Intel/AMD server
and Intel Phi processors are not binary compatible.

The Intel Phi coprocessors are also refered to as Intel MIC or their Intel product code
names Knights Ferry, KNF, (for the prototype), Knights Corner, KNC, (for the first generation
product), and Knights Landing (for the second generation product, to be released).

The Fermilab High-Performance Computing department acquired four servers with four
5110P cards each for investigation and prototyping of high-energy physics, HEP, applications.
As part of this activity the Compact Muon Solenoid, CMS, experiment [2] took a closer look at
the technology. Other groups investigated the use of the cards for Lattice Quantum Chromo-
Dynamics, LQCD, calculations, trigger, detector simulation, accelerator modeling, and other
applications.

In this note we report on the CMS investigation and show some of the performance mea-
surments made.

2 Setup

There are four servers with each four Intel 5110P coprocessor cards. Each server has two Intel
E5-2620 processor with 6 cores (hyper-threading is turned off) that run at 2.0 GHz. Each
server has 32 GBytes of memory, and Infiniband and Ethernet connection (via which two NFS
areas are mounted). The servers run Scientific Linux Fermi, SLF, 6.3. The Phi coprocessor
cards also run Linux, not SLF but BusyBox with a 2.6 kernel.

One additional server is used to build software (and provides one of the NFS areas). The
server has two Intel X5650 processor with 6 cores each (hyper-threading is turned off) that
run at 2.67 GHz. It has 12 GBytes of memory. The server has the Intel Manycore Platform
Software Stack, MPSS, installed and the Intel Cluster Studio Suite. Former contains the GNU
Compiler Collection, GCC, cross compiler for the Intel Phi coprocessor cards. Unfortunately,
the GCC cross compiler is based on a rather old version 4.7.0 and has no support for the vector
floating point unit of the Phi coprocessor. Cluster Studio contains the Intel cross compilers,
icc, icpc, and ifort. The first version of the Intel cross compilers used end of 2013 was version
14.0.0. The last version used in the investigation reported here was version 14.0.2, from March

2

of 2014.
Access to each server and the Phi coprocessors is scheduled via a batch system. Portable

Batch System, PBS, is used to allocate one or more Phi coprocessor cards.

3 CMSSW

The CMS offline software, CMSSW, consists of experiment specific software and third party,
“external” packages. End of 2013, CMS had already started building a CMSSW version for
the Phi coprocessor cards at CERN. The version of the Intel compiler for the first build was
13.1.3 and the CMSSW version 7 0 0 pre5.

In November 2013 we fetched and installed CMSSW version 7 0 0 pre7 build with the Intel
cross compilers version 14.0.0. Most external packages build but only a small number of CMS
specific packages. When Intel released version 14.0.2 CMS tried to build the CMSSW version
under development at that time, 7 0 0 pre8. More software of the CMS specific packages now
compiled but still only 47 of the 2211 shared libraries/plugins in the CMSSW release built.

The build failures investigated further turned out to be due to more complex templates and
C++11 extensions. For example, CMS uses the emplace hint function of std::map that comes
as extension with the C++11 standard but that is not yet available in the Intel compilers used.
The Intel compiler also set cplusplus to 1 instead of 201103L in case the -std=c++11 option
is specified. For Phi coprocessor compilation, the Intel compiler is not self-contained but uses
include files from GCC 4.7.0 of the MPSS package. GCC 4.7.0 has incomplete, “experimental”
C++11 support, particularly for concurrency, one of the main reasons for C++11 use in CMS.

In January 2014 it became clear that the Intel C++ compiler was months away from
compiling all (or at least a usefull subset) of a release 7 CMSSW version. Fermilab looked
into the Intel port of GCC 4.7.0 for the Phi coprocessor, extracted the patch and started to
integrate it into GCC 4.8.2. (GCC 4.8.1 was the compiler used by CMS on x86 64 at the
time.) The CMS offline group was already thinking to move to GCC 4.9. Problem reports on
the Internet showed that people had started porting GCC 4.9 to the Phi coprocessor. CMS
offline management ask to abandon the GCC 4.8.2 porting activity and started on GCC 4.9
at CERN instead.

As of July 2014, using Intel compilers version 15.0.0 beta 2, 45% of the CMS specific
packages build [3]. CMS reported the compiler problems to Intel with each new compiler
version and provided the compiler group at Intel with a copy of a CMSSW release earlier this
year. There is no GCC 4.9 port for the Phi coprocessor available yet.

4 Sherpa

Sherpa [4] is a Monte Carlo generator used in CMS and throughout HEP. It is one of the
external packages of CMSSW but is independent of it and can be downloaded, build, and run
without CMSSW.

Sherpa is one of the few event generators that can make use of multi-core CPUs (without
the user running multiple instances). The software can be compiled with multi-threading

3

support and/or Message Passing Interface, MPI. MPI is the method recommended by the
Sherpa team to use a large number of cores (or nodes) in a very scalable approach. The
CPU intensive phase-space integration has been run and its scalability measured on high-
performance computing/leadership class computing facilities, utilizing 16,000 cores [5]. The
authors of [5] also investigated speeding up Monte Carlo phase-space integration by using
Graphics Processing Unit, GPU, and Intel Phi coprocessor cards using a special version of
MadGraph [6] and Sherpa.

With neither CMS simulation nor reconstruction program available, using Sherpa in a
stand-alone mode is then the next best approach to investigate the Intel Phi coprocessor for
CMS. For this Sherpa version 2.0.0 was downloaded and build with MPI support using the
Intel compiler suite version 14.0.2.

The Z-boson production example at the Large Hardon Collider, LHC, in next-to-leading
order QCD precision using BlackHat was used. The jet multiplicity was, however, reduced
from four to three to adjust the execution time to less than a day for a single core modern
x86 64 CPU. (This would keep multi-core execution times at a durations where the execution
startup overhead could be ignored.)

A Sherpa process for the Z-boson production example uses about 750 MBytes of memory.
For the Intel Phi 5110P coprocessor card with 8 GBytes of memory this would allow less than
ten running instances or MPI processes. (Part of the 8 GBytes memory is also used by the
BusyBox operating system.) This wouldn’t leave much to investigate. We thus expanded the
evaluation from just the Phi coprocessor to also the Intel compiler suite.

For the investigation we decided to make three builds: Using the default Scientific Linux
GCC compilers for x86 64, using the Intel compiler suite for x86 64, and using the Intel
compiler suite for the Phi coprocessor. For the GCC x86 64 MPI build MPICH version 3.1 is
used while for the Intel compiler builds the MPI provided with the Intel compiler suite is used.

Using BlackHat for loop matrix elements in Sherpa requires the BlackHat software package
and QD, a quad-double precision datatype software package. The default GCC version for
Scientific Linux 6.4 is 4.4.7. It compiled QD, BlackHat, and Sherpa without error.

The Intel icpc compiler failed to compile one file for x86 64 and another for the Phi co-
processor. For file “qd real.cpp” the “mcpcom” process seemed to be getting into an infinite
loop. The file was compiled with an -O1 flag, instead of the default -O2 optimization. For the
Phi coprocessor build file “fpu.cpp” failed to compile with error 113, “incomplete type is not
allowed”. The file was compiled with the g++ compiler of GCC 4.7.0 from MPSS. Building
BlackHat failed on file “eval param.cpp” with “error #803: member ... explicitly instantiated
more than once”. The Intel support web site acknowledges the issue and advises to use the
-wd803 compiler flag to overcome the error. With the flag BlackHat compiled fine. However,
during execution of Sherpa, loading of the BlackHat shared object library failed when instanti-
ating the template class reported in the #803 error. For both x86 64 and the Phi coprocessor
QD and BlackHat were thus compiled with GCC1 and Sherpa with the Intel compiler suite.

The executables are all about 1 MByte (except for the x86 64 GCC MPI one which is about
a third the size). Most execution code is dynamically loaded from over 200 shared libraries.

1For the Phi coprocessor build GCC 4.7.0 of the MPSS package was used while for the x86 64 build GCC
4.4.7 from Scientific Linux.

4

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 0 2 4 6 8 10

to
ta

l w
al

l t
im

e
in

 s
ec

MPI processes

x86_64 (Intel Xeon X5650) / GCC 4.4.7
x86_64 (Intel Xeon X5650) / Intel comiler 14.0.2

Figure 1: Total wall time to complete the Z-boson production phase-space integration. The
points at zero are for the non-MPI executables. Error bars show the standard deviation of the
multiple timing measurments made for each number of MPI processes.

A non-MPI executable takes 710 MByte (x86 64 GCC), 740 growing to 4800 MByte (x86 64
Intel), and 710 MByte (Phi Intel) of memory during execution. An MPI executable requires
730 MByte (x86 64 GCC), 780 growing to 4900 MByte (x86 64 Intel), and 710 MByte (Phi
Intel) of memory for one process execution. There is a small rise in memory of about 10 MByte
per MPI process. The x86 64 Intel build Sherpa runs with about 740 MByte (780 MByte
MPI) until about 75 sec before finishing. At that time the process specific/private memory
(“anonymous memory” in pmap) starts to grow to over 4 GByte (for MPI in each process).
The GCC build Sherpa processes do not increase in memory before finishing. This is most
likely an Intel compiler issue. We plan to rebuild and test this with the next compiler release.

While analyzing the Sherpa memory usage in more detail we realized that about 600 MBytes
of process memory is used by shared libraries (Sherpa, BlackHat, QD, matrix element to be
integrated, etc.), i.e. can be shared by MPI processes. This then allows to run about 50 MPI
processes on the Phi coprocessor. (Considering also the growth of 10 MByte with each MPI
process).

The x86 64 versions were executed and timed on the build server with the two 6-core Intel
Xeon X5650 CPUs. The non-MPI executable took 19 hours 15 minutes 13.035 seconds (GCC

5

build) and 18 hours 59 minutes 10.077 seconds (Intel build) to complete. This makes the Intel
compiler build about 1.5% faster. There was no machine/architecture specific tuning done
during compilation, only default -O2 optimization.

The MPI executables show excellent scaling with an overhead of 1.4% (GCC build) and
1.1% (Intel build) per MPI process. Figure 1 shows the measured wall time and Fig. 2 the total
CPU time of all the MPI processes as as function of number of MPI processes. The non-MPI
execution is plotted at zero, Intel build measurements are x-offset by +0.25, the y-axis in Fig. 2
is zero suppressed.

 65000

 70000

 75000

 80000

 85000

 0 2 4 6 8 10

to
ta

l C
P

U
 ti

m
e

in
 s

ec

MPI processes

x86_64(Intel Xeon X5650) / GCC 4.4.7
x86_64(Intel Xeon X5650) / Intel comiler 14.0.2

Figure 2: Total CPU time used by all processes. The points at zero are for the non-MPI
executables. Error bars show the standard deviation of the multiple timing measurments
made for each number of MPI processes.

In case of the x86 64 Intel builds, the 1-process MPI executable run faster than the non-MPI
executable by about 2%. All timing was derived from multiple executions with the standard
deviation shown by the error bar in the figures. The difference is thus significant, about 4σ
and all individual runs of the MPI executable are faster than all the non-MPI runs. We did
not find the reason for this. The GCC and Phi coprocessor builds behaved as expected, with
the 1-process MPI executable slightly slower than the non-MPI executable.

The Phi coprocessor builds run much slower compared to the x86 64 builds. We expected
a significantly slower execution, by as much as an order of magnitude, as the Intel Phi 5110P

6

coprocessor is based on mid 1990s Pentium technology. However, we did not appreciate how big
of an effect out-of-order execution, branch prediction, pre-fetching, etc. has for large modern
HEP programs with linked data structures across large amounts of memory. Our expectation
was based on the product of CPU inprovements since the mid 1990s. However, this is wrong,
since today’s programs execute much slower on older CPUs than the speed up of old programs
on newer CPUs. The first execution we aborted after a few weeks of running with steady but
slow progress. We then used a check point in the program to estimate the total execution time
on the Phi coprocessor. For the non-MPI executable this gives us a total CPU time estimate
of 48 month! We used check points and their fraction of the total execution time from x86 64
runs for all Phi coprocessor timings.

Figure 3 shows the timing of the Phi coprocessor builds together with the x86 64 builds.
The y-axis has a logarithmic scale. Phi coprocessor builds run about 1, 750 times slower
than the x86 64 builds. The larger number of Phi coprocessor cores, 60 versus 12, does not
compensate for the slower execution. It is clear that using the Phi coprocessor in this way is
not efficient.

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 0 10 20 30 40

to
ta

l C
P

U
 ti

m
e

in
 s

ec

MPI processes

x86_64(Intel Xeon X5650) / GCC 4.4.7
x86_64(Intel Xeon X5650) / Intel compiler 14.0.2

Intel Xeon Phi 5110P coprocessor

Figure 3: Total CPU time used by all processes. The points at zero are for the non-MPI
executables. Error bars show the standard deviation of the multiple timing measurments
made for each number of MPI processes.

7

5 Conclusions

The current generation of Intel Xeon Phi coprocessors have the capability of large floating
point performance. They are not x86 64 binary compatible and require an Intel provided
compiler. The Intel compiler does not (yet) support the C++11 extensions the CMS software
uses. It fails to compile half the CMS software packages as of July 2014.

The compiler has also problems with other high-energy-physics software. Compared to a
GCC build x86 64 executable and Intel build x86 64 executable is only negligibly faster, within
the speed up expected from architecture-specific tuning or by using a more recent GCC release.

A standard Monte Carlo application was found to execute 1, 750 times slower on the Intel
Knights-Corner Xeon Phi coprocessor core than on an Intel Nehalem-based Xeon core. To
use Phi coprocessors effectively, high-energy-physics software needs to be modified/adapted to
off-load compute-intensive tasks onto the Phi coprocessor such that calculations with localized
floating-point data can execute in parallel.

References

[1] http://www.intel.com/content/www/us/en/processors/xeon/xeon-phi-detail.html

[2] The Compact Muon Solenoid, CMS, experiment uses a large general-purpose detectors to
analyze high-energy particle collisions of the Large Hadron Collider, LHC, at CERN in
Switzerland. http://cms.web.cern.ch/, http://cmsdoc.cern.ch/cms/cpt/tdr/

[3] S. Muzaffar, private communication (2014).

[4] T. Gleisberg et al., J. High Energy Phys. 02 (2009) 007, http://sherpa.hepforge.org/

[5] C. Bauer et al., arXiv:1309.3598 [hep-ph]

[6] J. Alwall et al., arXiv:1405.0301 [hep-ph], http://madgraph.hep.uiuc.edu/

8

